Erythrinarbine, a Novel nor-A ring Erythrina Alkaloid from Erythrina arborescens

Dong Lei YU*, Jian GUO, Li Zhen XU, Shi Lin YANG

Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100094

Abstract: Erythrinarbine **2**, a novel alkaloid was isolated from the stem of *Erythrina arborescens* Roxb. Its structure and stereochemistry were elucidated on the basis of the spectral analysis ($^{13}C - ^{1}H$ COSY, $^{1}H - ^{1}H$ COSY, NOESY and HMBC).

Keywords: Erythrina arborescens; erythrinarbine; nor-A ring erythrina alkaloid.

Erythrina arborescens Roxb. belongs to *Erythrina* genus of Papilionaceae family plants, and is widely distributed in tropical and subtropical regions of the world, as well as in the south and south-west of China¹. As a Chinese folk medicine, its root and stem are used to treat rheumatism and dysentery². The Erythrina alkaloids, normally a C_{16} tetracyclic spiroamine system, erythrinane **1**, are the characteristic constituents in *Erythrina* genus and about 100 erythrina alkaloids have been so far reported from this genus plants³⁻⁷. Most of these Erythrina alkaloids have a tetrahydroisoquinoline or hexahydroindolizine skeleton. In the present paper, we report the isolation and structure elucidation of a nor-A ring erythrina alkaloid, a new alkaloid-erythrinarbine **2** from the stem of *Erythrina arborescens*.

Erythrinarbine 2 was obtained as white plate crystals (MeOH) from the extract of EtOH, mp. 193-194 °C, optically inactive. The molecular weight was indicated as $C_{13}H_{15}NO_3$ by HR-EI mass spectroscopy, which gave the M⁺ ion at m/z 233.1051 (calcd. 233.1052). The presence of hydroxyl and carbonyl of amide were confirmed by a broad absorption at 3440 cm⁻¹ and a strong absorption at 1670 cm⁻¹ in the IR spectrum. The down field carbon signal at δ 173.36 in the ¹³C NMR confirmed the presence of the carbonyl of amide too. Six signals at δ 110.59, 110.97, 124.77, 130.06, 144.67 and 145.57 in the ¹³C NMR showed presence of a benzene ring. ¹H NMR of **2** exhibited two *para* signals in the aromatic region at δ 6.60 (1 H, s) and 6.67 (1 H, s), which are related with carbon signals δ 110.97 and 110.59 in ${}^{13}C{}^{-1}H$ COSY, respectively. The carbon signal δ 55.97, related with δ 3.87 (3H, s) in ¹³C-¹H COSY, is a methoxyl group (CH₃O) at the benzene ring. Another signal in middle field, δ 56.54, related with δ 4.69 (1H, t, 7.6) in ¹³C-¹H COSY, which was coupled with δ 2.58 (1H, m) and 1.82 (1H, m) in ¹H-¹H COSY, showed the presence of the moiety of ph-CH (CH₂)-N-C=O. Four carbon signals δ 27.63, 31.75, 37.20 and 28.12, related with four pairs of protons, eight signals δ 2.58, 1.82; 2.60, 2.48; 4.28, 3.03 and 2.88, 2.68 in ${}^{13}C^{-1}H$ COSY, respectively, showed the presence of four methylene (CH₂)×4

Dong Lei YU et al.

moieties. Among them, the carbon signal δ 37.20, related with δ 4.28 and 3.03 in ¹³C-¹H COSY, showed the presence of the moiety of CH₂-N-C=O. The above data showed a four substituted benzene ring, with two *para*-aromatic protons, a methoxyl and a hydroxyl groups on the one side in *ortho* position, and the other in *ortho* position was connected with a saturated cyclic system. ¹H-¹H COSY showed two groups of aliphatic proton signals which have no relation each other. One is δ 4.28, 3.03, 2.68 and 2.88, and the other is δ 4.69, 2.58, 1.82, 2.60 and 2.48. According to above data, we proposed the structure of **2**.

Figure 1. The skeleton of erythrinane 1 and NOESY correlation of the protons in erythrinarbine 2

In the NOESY, the aromatic proton δ 6.67, acted with δ 4.69 (H-9) and 2.58, 1.82 (H-1) is H-10, while the other aromatic proton δ 6.60 is H-13. The signal of OCH₃ δ 3.87 (3H, s) which was acted with δ 6.60 (H-13) should substitute in C-12. Thus OH which showed a broad signal in δ 4.3-5.6 (1H, br, in CDCl₃) and δ 8.89 (1H, s, in DMSO-d₆), should substitute in C-11.

As the above data, **2** was characterized as 10-hydroxy-11-methoxy-benzo[g] hexahydroindolizin-3-one, named erythrinarbine. It has a chiral carbon center, C-9. Because of its optical inactive, $[\alpha]_D 0$ (c 2.22, CHCl₃), it is a racemic modifications of **2A** and **2B** as follow.

Figure 2. The structure of erythrinarbine 2

The EI-MS spectroscopy showed the characteristic fragmental ions at m/z 233 (M⁺, 58), 322 (M⁺-1, 100), 218 (3), 217 (9), 216 (8), 202 (7), 190 (3), 189 (1), 188 (2), 177 (8), 176

Erythrinarbine, a Novel nor-A ring Erythrina Alkaloid from Erythrina arborescens

(11) and 162 (8). These fragmental ions were confirmed by exact mass measurement and elemental composition of the fragments from **2** (see **Table 2**). The base ion at m/z 232.0975 ($C_{13}H_{14}NO_3$, 100) is M⁺-1, which confirmed the presence of a -CH-N-moiety in the *ortho* position of the atom N. The molecular ion can lost CH₃ and CH₃, CO and get the two fragments, m/z 218.0779 ($C_{12}H_{12}NO_3$) and 190.0857 ($C_{11}H_{12}NO_2$) respectively. At the same time, the base fragment ion can lost CH₃ and CO, and also get two fragments, m/z 217.0737 ($C_{12}H_{11}NO_3$) and 189.0794 ($C_{11}H_{11}NO_2$). These proved the presence of OCH₃ on benzene ring. The molecular ion can also lost OH and get the fragment, m/z 216.1029 ($C_{13}H_{14}NO_2$). It is because the presence of carbonyl group on the cyclic amide, which loses hydroxyl by enolazation. The cyclic-B in the molecular ion breaks and then appears fragment ions m/z 177.0783 and 176.0706 (composition $C_{10}H_{11}NO_2$ and $C_{10}H_{10}NO_2$).

Table 1. ¹H and ¹³C-NMR spectral data of compound 2

C/H	C δ (CDCl ₃)*	H δ (J in Hz, CDCl ₃)*	H δ (J in Hz, DMSO-d ₆)
1	27.63	2.58 (1H, m)	2.23 (1H, ddd, 15, 8.0, 1.5)
		1.82 (1H, m)	1.58 (1H, ddd, 15, 12.5, 8.0)
2	31.75	2.60 (1H, m), 2.48 (1H, m)	2.63 (1H, m), 2.40 (1H, m)
3	173.36	_	_
5	37.20	4.28 (1H, ddd, 12.5, 6.0, 2.0)	4.00 (1H, ddd, 12.5, 5.0, 3.4)
		3.03 (1H, ddd, 12.5, 9.4, 4.2)	2.93 (1H, ddd, 12.5, 12.0, 7.8)
6	28.12	2.88 (1H, ddd, 15.0, 9.4, 6.0)	(1H, m)
		(1H, ddd, 15.0, 4.2, 2.0)	2.53 (1H, m)
7	124.77	_	_
8	130.06	_	_
9	56.54	4.69 (1H, t, 7.6)	4.61 (1H, t, 8.0)
10	110.59	6.67 (1H, s)	6.69 (1H, s)
11	144.67	_	_
12	145.57	_	_
13	110.97	6.60 (1H, s)	6.56 (1H, s)
OCH ₃	55.97	3.87 (3H, s)	3.73 (3H, s)
OH	_	4.3-5.6 (1H, broad)	8.89 (1H, s)

*According to 13C-1H COSY and 1H-1H COSY in 100 and 400 MHz, respectively.

IR v (KBr) cm⁻¹: 3400 (OH), 1670 (C=O), 1620, 1575, 1520, 1460, 1440, 1292, 1262, 1218, 1110. UV λ_{max}^{MeOH} 286nm. Data of ¹H NMR and ¹³C NMR are listed in **Table 1**, and data of exact MS are listed in **Table 2**.

Table 2. Exact Mass Measurement and Elemental Composition

Fragment ion m/z	Composition	Fragment ion m/z	Composition
233.1051 (58)	C13H15NO3	190.0857 (3)	$C_{11}H_{12}NO_2$
232.0975 (100)	$C_{13}H_{14}NO_3$	189.0794 (1)	C ₁₁ H ₁₁ NO ₂
218.0779 (3)	$C_{12}H_{12}NO_3$	188.0689 (2)	$C_{11}H_{10}NO_2$
217.0737 (9)	$C_{12}H_{11}NO_3$	177.0783 (8)	$C_{10}H_{11}NO_2$
216.1029 (8)	$C_{13}H_{14}NO_2$	176.0706 (11)	$C_{10}H_{10}NO_2$
202.0918 (7)	$C_{12}H_{12}NO_2$	162.0612 (8)	C ₉ H ₈ NO ₂

Dong Lei YU et al.

References

- 1. F. C. How, A Dictionary of the Families and Genera of Chinese Seed Plants, Sciences Press, 1982, 185.
- 2. Jiangsu New Medical College, A Dictionary of Chinese Traditional Medicines, Shanghai People Press, 1977, 3994.
- 3. A. S. Chawla and V. K. Kapoor, Alkaloids: Chem. Bio. Pespt., 1995 (9), 85.
- 4. M. E. Amer, M. Shamma and A. J. Freger, J. Nat. Prod., 1991, 54 (2), 329.
- 5. S. Sharma and H. M Chawla, India J. Heterocycl Chem., 1992, 2 (2), 71.
- 6. M. E. Amer, F. F. Kassem, S. EL-Masrg, M Shamma and A. J. Freger, *Alexandria J. Pharm. Sci.*, **1993**, 7 (1), 28.
- 7. H. M. Chawla and S. Sharma, *Fitoterpia*, **1993**, *64* (1), 15.

Received 19 August 1998

142